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1. INTRODUCTION

Reference I contained information which indicated that there may be a correlation between
experimentally observed Hugoniot Elastic Limit (HEL)/Elastic Plastic Shock Phenomena
(FPSP) and the De Broglie velocity, V1 (Section 11). Since the publication of Reference 1. the
shock physics literature has been searched for additional examples where the De Broglie influ-
ence is evident or suspected.

Data have been found which indicate that certain energetic materials can respond to V1
magnitude particle velocities in dramatic manner. That is, particle velocities on the order of
V1 produce lattice disturbances sufficient to initiate unstable chemical reactions or atomic rear-
rangement of a marginally stable substance.

Lead azide (PbN6), both in mixed and Single Crystal (S. C.) forms, exhibits this characteris-
tic. Comparative documentation of this statement for lead azide is contained in Section IV of
this report.

The importance of V1 magnitude particle velocities with regard to initiating detonation
in primary or sensitive explosives is not a new idea. It was suggested by Fitzgerald [21 in 1969.
He showed that V, and the explosive material critical particle velocities from drop tests coin-
pared reasonably well. The present report compares V1 effect predictions with experimental
data in cases where the dynamic loading was applied by metal plate impact.



II. THE De BROGLIE PARTICLE VELOCITY, V1 = H/(2N[I))

Fitzgerald [3, Chpts 1 and 3] delineated the importance of the De Broglie momentun,.
wave-wave length particle velocity, V 1, with regard to impacted solid material behavior. 1hc
De Bru-Aie velocity, V1, is:

V h h
2md, n1 -a

Where:

V1 = Limiting particle velocity which can occur without permanent lattice distortion
(plastic flow); or the limit particle propagation velocity in a stationary laiI i-c
Units are cm/sec or km/sec [1].

h Planck's Constant
= 6.6262 * 10-2 7(gram)(cm 2)/sec

m = Mass of one atom, grams

d, = Closest distance between the atoms in a crystal lattice, or the atomic spacing iW.
slip direction, units are cm or angstroms, A, (1 A = 10-cm).

= 2d, = wave length associated with the momentum, mVj. It is the shortest , a.,
length possible in an undistorted lattice or stationary lattice. cm or A.

Table 1 lists longitudinal elastic wave velocity, CL, information for the materials cons idclekl
in this report. Also shown in Table I is the elastic wave pressure, Pv,, corresponding to the .x
velocity. Cl. and the particle velocity, V1. This is given by:

PV = pC[I 1  (2)

where pa is the material density (grams/cc).



I11. FITZGERAkLD'S PARTICLE VELOCITY STABILITY CRITERL

Fitzgerald, utilizing his concept of reversed lattice motion [3, Chapter 31, shows statcs with
particle velocities ranging from approximately 0.50 V1 to 0.75 V1 are unstable. Velocities can
jump to values higher than V1 . Particle velocities in the immediate region around V1 appear to
be stable. In addition, Fitzgerald also showed 2Vt was an important unstable velocity where ex-
cessive distortion would occur.

Thus, there are three important velocity ranges/values:

1. 0.50 V, to 0.75 V1 ; unstable state, velocities may jump to a magnitude greater than
VI.

2. V1 vicinity; apparently a stable state.

3. Vt to 2V 1; unstable, particle velocities in this region will approach V1 under
"long-term" operating conditions. Ample time is necessary to allow particle
momentum sharing with a sufficient number of lattice masses [3, pp. 72 - 74].
This, by definition, is a relaxation time.

Since interest is in characterization of responses of those cases in which tne particle veloc-
ity. Up. is of the same magnitude as V1, we have examined published experimental shock data
for that dynamic regime. We have partitioned responses into four, not necessarily exclusive,
categories. They are in order of severity.

1. No permanent change in structure and/or properties.

2. Some alteration of properties.

3. Classic HEL/EPSP behavior.

4. Significant alteration of structure to include detonation.

Some examples of particle velocity effects in categories 1, 2. and 3 are under investigation
and will be documented as time and circumstances permit. Single examples of "V1 Effects" (in-
cluding those in Reference 1 and the present report) are not conclusive proof that the "V; Effect"
is the "root cause" of the phenomena. However, as more suspected "VI Effects" examples are
documented, the probability of fortuitous circumstances or mere chance occurrence is decreased.

In materials with marginally stable cohesiveness, the lattice perturbation from "V 1 Effects"
may be sufficient to upset the rather precarious atomic arrangement and violent rearrangement
(detonation) occurs. Certain so called primary (or very sensitive) explosives fall into this cate-
gory. The present report provides some "V1 Effect" comparative evidence for lead azide which
is a foremost primary explosive [5].

"Suspected V, effect" phenomena examples are not necessarily easy to document. The fol-
lowing information is needed.

[[EM REMARKS
1. m or mAy To compute V1, for elements and certain compounds,

and this may not be difficult, but complex compounds or
d, or dlAv complex lattice structures may pose a debatable judge-

mental problem.
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2. Shock velocity, Us, or elastic To compute Pv1.
wave velocity, CL, as a func-
tion of particle velocity, Up.

3. Experimental shock induced To compare with the V, and Pv1 predictions.
reactive information as a
function of Up, Us, and Ps.

The above information should be for the same material (same composition; same densilv.
Po same manufacturing history, etc.) or credibility will suffer. It is difficult to asemble thiS I':
formation for the same consistent material. Examples of this difficulty are evident in Sectionl lV

IV. EXPERIMENTAL REACTIVE SHOCK PRESSURES
AND COMPARISON WITH Pvl PREDICTIONS

A. Dextrinated Lead Azide (DLA)

DLA is a mixture of lead azide and dextrin. Dextrination of lead azide provides han-
dling and safety benefits 15, Vol. 2, Chpt. 1]. Reference 4 contains systematic experimental
shock data for dextrinated lead azide (DLA) mixtures. The shock loading was accomplished N i
plate impact and exploding foil impact. Table I of Reference 4 lists shock pressure (Ps) data ak
a function of travel distance (T) in the DIA specimen (Po = 3.41 g/cc). This information is
plotted in Figure 1 of the present report. Note that for Ps < 4.0 kbars, the pressure remains rcl.-
tively constant with travel distance (or time).

However, for Ps > 6.0 kbars, the pressure remains practically constant for a short dis-
tance and then increases rather abruptly in a step function fashion. This rapid pressure increase
is an indication that detonation has begun. Consequently, the critical shock pressure to cause
d. :onaion via plate impact lies between 4.0 and 6.0 kbars. This critical pressure region for Dl .
with p, = 3.41 g/cc is also plotted in Figure 2. It contains experimental shock induced firing
stimulus data for DLA as a function of material density (Po) [6]. These results were acquired vi:i
Small Scale Gap Testing (SSGT). The SSGT results for Po = 3.41 g/cc indicate an ignition at 3.,
kbars. This is approximately the impulse pressure necessary for a 50 percent detonation proba-
bility tor DLA which was estimated using steel ball-drop test results [191. This pressure was
2.8 * 09 dyne/cm 2 which is 2.80 kbars.

Also shown in Figures 1 and 2 are Pvl indicators where VI was computed via
Equation 1 with the following atomic mass and interatomic distances:

a Nitrogen atom, mn, and the average distance between atoms (dIN-N = 1.18 A)
in an azide group ([7] for S. C. 0 - PbN 6).

b. Nitrogen atom, mr, and the shortest distance between the N3 azide ion groups
([8, p. 9851; N5 atom; azide II to N10 atom, azide IV). This distance is
dIA-A = 2.95 A.

4



Table 1 contains numerical values for V1 and P, 1. The elastic wave velocity (C,.
employed to compare P, 1) was 1.223 km/sec which is given in Reference 4 for DLA (P0 

= 3.4!
gcc). The interatomic distances are for the a - PN6 crystal since DLA is composed of small
lead azide crystals surrounded by dextrin [5, Vol. 2, p. 291.

The nitrogen atom mass and interatomic distances were employed to compute VI
since it is the destabilized N3 azide ion groups which will recombine to form N2 gas in an exo-
thermic reaction 15, Vol.1, pp. 195 and 452].

2N 3 - 3N 2 + HEAT ENERGY (3)

Now according to Garner [91:

"Sufficient energy is set free to activate three or four neighboring N6 groups if this
energy were all available for this purpose. A chain reaction is thus a possibility."

Garner 191 also says that actually two or three adjacent N6 ion groups would have to
decompose simultaneously (within 10-13 sec) to produce a self-sustaining detonation wave.
This would be an explosion nuclei, or the beginning of a "hot spot."

Note also the remarks of Soderquist 1101 in regard to sensitiveness and decomposition
of copper (I1) azide, Cu(N 3)2. He suggests that N2 gas will be released and will propagate rapid-
ly in the channels or voids in the atomic lattice. He also says that the N - N distances in the N3

azides (d, - 1.18 A) are close to the observed distances (1.10 A) for dinitrogen gas (N2 ).

This probably accounts for the sensitivity of PbN6 and CuN 6 since the "V 1 Effect-
would only have to perturb the azide atoms a small amount (:- 0.10 A) to destabilize the
precarious arrangement.

In Figure 1, Pv1, for V1 where d1N-N = 1.18 A was employed, is 5.0 kbars which
lies between the 4.0 and 6.0 kbar critical limits established by plate impact testing. Pv, for V1

where d1A-A = 2.95 A is 2.0 kbars and is somewhat less than this 4.0 to 6.0 kbar critical re-
gion. However, this Pv 1 value (2.0 kbars) is comparable to the SSGT result (3.0 kbars) for a 50
percent probability of ignition.

Considering the differences in the experimental testing and the judgmental V1 compu-
tations, the Pv 1 predictions and the experimental results exhibit reasonable agreement.

It is worth nothing that if the lead atom mass mpb, and distances (dlpb - Pb), are uti-
lized for Pv1 predictions, then V, is exceptionally small and Pv1 is much less than 1.0 kbar. Per-
haps this is an explanation of the extreme sensitivity of lead azide which is occasionally men-
tioned. However, DLA (Po = 3.41 g/cc) was not this sensitive, so that "V 1 Effects," based on
lead atom parameters were considered unlikely for this density. However, the dextrin's presence
could negate this extreme sensitivity so that lead atom motion cannot be entirely ruled out.
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B. Single Crystal Lead Azide (S. C. PbN 6)

Reference 8 states that there are four polymorphic forms of lead azide. These ;it:.'"
ignated as the o, P , y, and 6 forms. Crystal structure investigations of o - PbN 6 are docuw;ncriJ
in References 7 and 8. Although only two elements are present, the lattice struture is r'1t1r
complex.

Chaudhri [11 performed a shock induced initiation study of S. C. I1 -- Ph,Nt via the i! .
-pact of thin steel plates. Four significant data points from this investigation for different iM1p:t'.',
velocities,V, are as follows:

V, > 105 m/s, detonation always occurred.

V, = 95 m's, initiation of fast reaction.

V = 90 m/s, initiation did not occur.

V, S 75 m/s, detonation never occurred.

The initial pressure, Ps, at the impact interface is given by:

Ps = Pw W 2 V1 (k w1 +pw 2]

This is written in Reference 11 notation where the Index I refers to ; - PrNf, and ti:,
Index 2 refers to the steel plate. Numerical values are as follows:

p, = 4.93 gicc = S.C. P - PbN6 density.

wI = 2.00 ki/sec = wave front velocity
in S. C. 3 -PbN6.

P2 = 7.84 g/cc = steel density.

W2 = 5.85 ki/sec = wave front velocity
in steel.

Also at the contact interface:

Ps = ptwtUpI = p2w2Up 2  (5)

So that:

Up s particle velocity in S. C. 13- t'hN6 (6)
P1 w1

Ps
Up 2  = - particle velocity in steel. 7)

P 2 w 2

6



In addition, the sum of the particle velocities at the contact interface is equal to \ 1 ,

which can serve as a check on the computations.

VI = UpI + Up2  (8)

Table 2 contains numerical values of the impact pressures and particle velocities for
the four impact conditions listed above. The pressures are also listed below.

V = 105 m/s, Ps = 8.5 kbars.

V, = 95 m/s, Ps = 7.7 kbars.

VI = 90 m/s, Ps = 7.3 kbars.

V1 = 75 m/s, Ps = 6.1 kbars.

Indicator symbols for these Ps values are shown in Figure 2 on the dotted line for
S.C. 3 - PbN 6 (Po = 4.93 g/cc).

V1 and Pv1 were not computed for S. C. 1 - PbN6 since the authors were unable to
locate a source for the interatomic distances (which are probably similar to those found for

- PbN 6). Also there is some uncertainty about what value of w1 to utilize in the S. C. 1 - PbN6
PvI computations.

Chaudhri and Field [12, p. 308] say that the longitudinal wave velocity for S. C. 13 -
PbN6 vari=q from 1.85 to 2.45 km/sec. As noted above, Chaudhri [11] suggests a wave velocity
(wI) equal to 2.00 kn/sec for S. C. A - PbN6. However, this value of w, yields Ps = 8.5 kbars
for VI = 105 m/sec. This differs from the 9.5 kbars mentioned for V = 105 m/sec which may
have merely been suggested as an approximate impact pressure for this condition. If w1 = 2.25
krn/sec, then Ps = 9.4 kbars.

Rather than speculate to some extent on both VI and CL (or w1 ), PvI for S. C. ( -

Pt,N6 was not computed. However, Pvj was computed for o - PbN6. The V1 values are the
same as discussed in Part A of this section, since they are were based on cx - PbN6 nitrogen bond
length data from References 7 and 8. The elastic wave front velocity (CL or wl) for S. C. % -
PbN6 was determined from Young's modulus (E<,oo>) information contained in Reference 13.

The elastic wave front velocity (CL) in S. C. a - PbN6 is:

CL = /E<I00> . 1.856 km/sec
PO o(9)

= velocity in < 100 > direction

E<1 oo, - 1.62 * 1010 Newtons/(meter) 2

= 16.2 1010(') (*I2 (10)

- Young's modulus from tensile
tests in <100> direction.

7



This CL value for S. C. O - PbN6 appears reasonable in view of the wave velocities
discussed above for S. C. 0 - PbN6.

The Pv1 values (4.2 and 10.5 kbars) for S. C. Oc - PbN6 bracket the expcrimcntal
critical Ps magnitudes (6.1 to 8.5 kbars) for S C. P - PbN6. This is still true if the experimental
values should be increased about a kilobar since CL may be about 2.25 km/sec instead of 2.00
km/sec as discussed above. The critical particle velocities in the S. C. f - PhN6 are obviously
close to V, magnitudes so that instability due to a perturbing V, effect is feasible.

Fox [13] indicates that shock pressures of approximately one kilobar (OCR - 1.0 kbar)
are sufficient to cause an explosive reaction in S. C. o - PbN6. These results were obtained for
very small crystals (length - 1 mm) via a microtensile testing machine described in Reference
14. From Figure 2 of Reference 13, the maximum tensile stress as a function of strain rate

for fresh lead azide is 14.0 * 10" n/m 2 or 1.4 kbars. This point (OCR = 1.4 kbars) is shown in

Figure 2 on the S. C. c - PbN6 indicator line. Its magnitude is obviously much less than tne
Pv1 predictions (based on nitrogen parameters) and plate impact experimental results [11] for
S. C. t3- PbN6.

Consequently, it is recommended that plate impact testing of S. C. c - 1tN 6 crystals
be performed in a manner similar to that for S. C. 3 - PbN6 [I1 ]. Larger S. C. Oc - PbN 6 should
be employed than utilized by Fox [131. In Reference 8, it is noted that S. C. - PbN 6 was avail
able in prism form which was 3 mm thick, 5 mm wide, and 8 mm long. This is much largei tt:v
the tensile test specimen [131 which were only about 1.0 mm long. In Reference 7, it is noted
that their work was made possible by an advancement in growing lead azide crystals which is
documented in Reference 15. If possible, it is recommended that these relatively large, statlc
Ot - PbN6 crystals be tested via flat plate impact for comparison with the S. C. (I - PbN6 results
reported in Reference 11 and the present Pvj predictions.

8



V. CONCLUSIONS

From the comparative analysis presented in Section IV, it is apparent that the plate impact
and SSGT induced shock pressures (or particle velocities), sufficient to cause detonation in lead
azide, are very close to feasible Pvl pressures (or V1 magnitude particle velocities). Conse-
quently, it is possible that the De Broglie/Fitzgerald "V1 Effect" is a factor in lead azide detona-
tion phenomena. Additional Pvl, V, comparisons with other azides (AgN3 and CuN6) and pri-
mar" explosives are required to provide a more definite conclusion. These comparisons will be
made and documented when appropriate experimental results are available.

The present document is Number 4 in a series of reports [1, 16, and 17] whose primary pur-
pose is to suggest that certain critical particle velocities could be a "root cause" of low pressure
level shock induced reactions observed in solid materials. That is, particle velocity criteria as
discussed in these reports are believed to provide a unified explanation for certain shock induced
reactions and phenomena. As far as probable primary causes of detonation are concerned, it is
obvious from Chaudhri's introductory remarks in Reference 18, that new ideas and concepts, al-
beit perhaps unusual or even bizarre, merit attention and exploration.

VI. RECOMMENDATIONS

As noted in Section II, the importance of methodical and consistent testing cannot be over
emphasized. The following testing recommendations have been made in prior sections.

1. Plate impact testing of S. C. ,C - PbN6 to determine critical reaction pressure levels
(or particle velocity).

2. Plate impact testing of additional azides and primary explosives to determine critical
reaction pressure levels (or particle velocity).

If this information is currently available, its documentation is unknown to the authors.

9/(10 Blank)
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TABLE 2. Particle Velocities and Shock Pressures for Steel Plate Impact
on S. C. 0 - PbN6 Experiments [11].

V1  Up1  Up2  Ps REMARKS
(PbN6) (STEEL)

km km km kbars

sec sec sec

0.105 0.0864 0.0188 8.52 ALWAYS DETONATION
ABOVE THIS VI.

0.095 0.0782 0.0168 7.71 FAST REACTION,
[11], FIG.2.

0.090 0.0740 0.0160 7.30 NO REACTION,
[11]. FIG. 3.

0.075 0.0617 0.0133 6.09 ALWAYS NO DETONATION-
BELOW THIS V1.
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